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The rheological properties of polymer melts and other complex macromolecular fluids are often successfully
modeled by phenomenological constitutive equations containing fractional differential operators. We suggest a
molecular basis for such fractional equations in terms of the generalized Langevin equation �GLE� that under-
lies the renormalized Rouse model developed by Schweizer �J. Chem. Phys. 91, 5802 �1989��. The GLE
describes the dynamics of the segments of a tagged chain under the action of random forces originating in the
fast fluctuations of the surrounding polymer matrix. By representing these random forces as fractional Gaussian
noise, and transforming the GLE into an equivalent diffusion equation for the density of the tagged chain
segments, we obtain an analytical expression for the dynamic shear relaxation modulus G�t�, which we then
show decays as a power law in time. This power-law relaxation is the root of fractional viscoelastic behavior.
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I. INTRODUCTION

The constitutive equations that describe a polymer’s rheo-
logical properties, and that are the subject of much theoreti-
cal research, have, over the years, been variously derived
from models of polymer dynamics that range from the mi-
croscopically sophisticated �1� to the purely phenomenologi-
cal �2�. Of the latter class of models, one that increasingly
seems to be finding applications in the medical and biologi-
cal sciences is based on the methods of fractional calculus
�3�. Models in this class are typically obtained by replacing
ordinary derivatives in the stress-strain relations of existing
rheological models �such as those of Thomson �4� or Voigt
�5�� by so-called fractional derivatives �6�. The approach,
although ad hoc, seems to work well in describing the com-
plex relaxation behavior that characterizes most polymeric
systems. The goal of this paper is to determine whether a
molecular basis can be found for the widespread applicabil-
ity of fractional operators in the study of viscoelastic phe-
nomena.

This question has already been partly settled by Bagley
�7�, who showed that the Rouse model of chain dynamics �8�
leads to a constitutive equation in which fractional deriva-
tives are a natural outcome of the model’s defining proper-
ties. But his calculation, although suggestive, only estab-
lishes that a particular fractional time derivative—one with
an exponent having the special value of 1/2—appears in the
equation. It does not establish that any other value can ap-
pear as well. So what explains the occurrence of those other
values?

The calculations presented here will suggest that a pos-
sible explanation can be found in a model of polymer melt
dynamics introduced by Schweizer �9�. This model is a gen-
eralization of the Rouse model and is largely defined by a
generalized Langevin equation �GLE� �10� for the time evo-
lution of a tagged chain in a matrix of other polymers. In
Schweizer’s model, all the effects of the matrix polymers on
the tagged chain are contained in an object called the
memory function, which in principle can be determined ex-
actly, but which in practice must be approximated. Consid-
erable effort has gone into finding microscopically realistic

and analytically tractable approximations to the memory
function �10,11�, but the results are often opaque and tend to
involve quantities almost as difficult to make physical sense
of as the memory function itself. Under the circumstances, it
is worth asking how far calculations with the GLE can be
pursued using the fewest number of assumptions about the
random force. We have found that if the random force is
simply treated as a stochastic process whose statistics can be
prescribed �rather than as a quantity that must be determined
from some complicated many-body potential�, it is possible
to obtain an analytical expression for the shear relaxation
modulus G�t� of a tagged chain by assuming only that the
stochastic process is Gaussian. �The structure of the GLE
actually demands that the process be Gaussian anyway.�
With this assumption, G�t� can be directly related to the
memory function �via the autocorrelation of the random
force�. One can then show that in order for G�t� to decay as
a power law in time �and thereby generate fractional deriva-
tives in the chain’s constitutive equations� the random force
must also decay as a power law �which means that the un-
derlying stochastic process must correspond to fractional
Gaussian noise �fGn� �12��.

In the following section, we briefly review the model of
polymer melt dynamics developed by Schweizer that will
form the starting point of our analysis. We then show, in Sec.
III how this model can be converted into a Smoluchowski
equation. Using this equation, we proceed in Sec. IV to a
calculation of the relaxation modulus, and then establish in
Sec. V that for a particular choice of force correlation func-
tion it does indeed decay as a power law. We conclude with
a discussion of our results and some general observations.

II. RENORMALIZED ROUSE MODEL

Starting from the exact equations that define the dynamics
of a collection of n interacting polymers of chain length N,
Schweizer �9� showed, using projection operator techniques,
that at time t the position r�� , t� of a monomer segment lo-
cated at the point � along the chain backbone evolves in time
according to the following approximate equation �9,13�:
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Here, � is the monomer friction coefficient; F�� , t� is a ran-
dom force acting on the point � at time t; � is effectively a
spring constant, defined as 3kBT / l2, with l as a Kuhn length;
and ����−��� , t− t�� is a memory function, which is related to
the random force by a fluctuation-dissipation theorem:
�F��� , t�F���� , t���=�kBT�������−��� , t− t��.

As just stated, Eq. �1� is not exact and several approxima-
tions have been made in deriving it. These include the ne-
glect of inertia �the equation therefore describes the regime
of overdamped dynamics�, the use of a harmonic potential of
mean force to describe intramolecular near-neighbor interac-
tions �which leads, thereby, to a linear theory that can be
analyzed in terms of Rouse normal modes�, the neglect of
hydrodynamic interactions �which are assumed to be
screened out�, and the factorization of the memory function
into velocity and coordinate contributions �which eliminates
the instantaneous configuration dependence of the exact
memory function�. Despite these approximations, the general
approach that leads to Eq. �1� has advantages over several
existing models of melt dynamics, especially those—such as
reptation �8,14�—that are purely phenomenological: it is de-
rived from a formally exact set of dynamical equations �the
approximations to which are well motivated and largely free
of any prior assumptions about the mechanism of chain re-
laxation�, it allows for systematic improvements to these ap-
proximations �at least in principle�, and it is for the most part
analytically tractable. Furthermore, essentially all of the
physics that it describes is contained in the structure of the
memory function, which is now the only quantity for which
a theory must be developed.

Schweizer’s analysis of this quantity has chiefly been pur-
sued within the framework of mode-coupling approaches and
leads to complicated expressions that are not easily inter-
preted or reduced to simpler forms �9�. For this reason, his
approach, although rigorous, is not ideally suited to a study
of the roots of fractional viscoelasticity, a problem that we
believe may be better addressed simply by treating the force
F�� , t� as a stochastic variable and determining the statistical
correlations it must have to produce fractional dynamics in
quantities like the relaxation modulus G�t�. It turns out that
in order to do this it is sufficient that F�� , t� only be a Gauss-
ian random variable, a condition that is actually fulfilled by
the following two circumstances: one, that the process r�� , t�
is itself Gaussian �at least within the harmonic potential of
mean force approximation used here� and, two, that F�� , t� is
linearly related to r�� , t� by Eq. �1�. As we will now discuss,
the Gaussian character of F�� , t� makes it possible to use Eq.
�1� to derive an expression for the relaxation modulus G�t� in
terms of the memory function and to determine under what
conditions it shows fractional decay.

III. CORRESPONDING SMOLUCHOWSKI EQUATION

To calculate G�t� from Eq. �1�, we begin by introducing a
set of independent normal modes 	Xp
, defined as �8�

Xp�t� =
1

N
�

0

N

d� cos�p	�/N�r��,t� . �2�

The substitution of these variables into Eq. �1� leads �after
the neglect of chain end effects� to an equation in which
near-neighbor interactions have been decoupled �15�,

��
0

t

dt��p�t − t��
�Xp�t��

�t�
+ �

p2	2

N2 Xp�t� = Fp�t� . �3�

Here, �p�t− t��=�0
Nd� cos�p	� /N���� , t− t�� and Fp�t�

=N−1�0
Nd� cos�p	� /N�F�� , t�.

The mode-dependent random force Fp�t� is easily shown
to have these following properties �again, after the neglect of
chain end effects�:

�Fp�t�� = 0, �4a�

�Fp��t�Fq��t��� =
�kBT

2N
����pq�p�t − t��, �,� = x,y,z .

�4b�

For many purposes, it proves to be more convenient to work
with an evolution equation for the probability density of the
normal modes rather than with the evolution equation for the
normal modes themselves, so Eq. �1� is now transformed into
an equivalent Smoluchowski equation, starting from the
definition

P�X1x,X1y,X1z, . . . ,XNx,XNy,XNz,t�

= �
p=1

N

�
�=x,y,z

��„Xp��t� − Xp�…� , �5�

where the angular brackets refer to an average over all real-
izations of the noise �i.e., of the random force Fp�t��. The
evolution of P�	Xp
 , t� is obtained by differentiating Eq. �5�
with respect to t; after making use of various properties of
the delta function, this leads to

�P�	Xp
,t�
�t

= − 

p=1

N



�=x,y,z

�

�Xp�


��
q=1

N

�
�=x,y,z

�„Xq��t� − Xq�…Ẋp��t�� , �6�

where the overdot on Xp refers to a time derivative. To pro-

ceed further, one needs an expression for Ẋp��t�, which can
be obtained from Eq. �3� using Laplace transform tech-
niques, as discussed in detail in several earlier places �16�.
Without going into details, therefore, one can show that

Ẋp��t� = − �p�t�Xp��t� +
1

kp�
�̄p��t� , �7a�

where �p�t�=−
̇p�t� /
p�t�, and 
p�t� is the inverse Laplace
transform of the function 
̂p�s�, which in turn is given by
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̂p�s� =
�̂p�s�

s�̂p�s� + kp

, �7b�

with �̂p�s� as the Laplace transform of �p�t�. The Laplace
transform ĝ�s� of a function g�t� is defined as ĝ�s�
=�0

�dtg�t�exp�−st�. The parameter kp in Eqs. �7a� and �7b� is

defined as kp=�p2	2 /N2�, while the function �̄�t� is the ran-
dom variable

�̄p��t� = 
p�t�
d

dt

p�t�−1�

0

t

dt��p�t − t��Fp��t�� , �7c�

with �p�t� being defined as the inverse Laplace transform of
the function �̂p�s�=1−s
̂p�s�. Equation �7a� is now substi-
tuted into Eq. �6�, and the functional calculus methods de-
scribed at length in Ref. �16� are used to transform the latter
�after considerable algebra� to the following equivalent
Smoluchowski equation:

�P�	Xp
,t�
�t

= 

p,�

�p�t�� �

�Xp�

Xp� +
kBT

2N�kp

�2

�Xp�
2 �P�	Xp
,t� .

�8�

This transformation is exact and is made possible by the
Gaussian character of Fp�t�, which is invoked when applying
Novikov’s theorem �17� to one of the steps of the calculation.
Equation �8� has exactly the structure of the Smoluchowski
equation that describes Rouse dynamics �and of the corre-
sponding equation in �16� that describes one-dimensional
particle motion on a harmonic potential�, but now the diffu-
sion coefficient, �p�t�, is time and mode dependent and the
equation itself is nonhomogeneous in time, although convo-
lutionless.

IV. RELAXATION MODULUS

To calculate rheological properties from the renormalized
Rouse model, it is necessary to incorporate the effects of
flow into Eq. �1�. This is usually done by the inclusion of the
term ��t� ·r�� , t�, where ��t� is the rate of strain tensor,
which specifies the nature of the flow and which may, in
general, be time dependent. For simple shear, for example,
��t� is given by

����t� = ��0 1 0

1 0 0

0 0 0
� , �9a�

where � is the strain rate. Unfortunately, if the term
��t� ·r�� , t� is directly added to Eq. �1�, the Laplace trans-
form techniques that lead from that equation to an equation
for Xp�t� now no longer yield easily invertible results. To get
around this difficulty, we instead rewrite ��t� ·r�� , t� in terms
of normal modes �using the expansion r�� , t�
=2
p=1

N Xp�t�cos�p	� /N�, with neglect of the center-of-mass
coordinate�, and then add the result to Eq. �7a� �which is the
normal mode representation of Eq. �1��, to produce

Ẋp��t� = − �p�t�Xp��t� +
1

kp�
�̄p��t� + 


�

����t�Xp��t� .

�9b�

This procedure can really only be justified a posteriori by
comparing its predictions with known results and checking
for self-consistency.

With the inclusion of flow into Eq. �7a�, the equivalent
Smoluchowski equation can now be shown to be given by

�P�	Xp
,t�
�t

= �

p,�
��p�t�

�

�Xp�

Xp� +
Dp�t�
�2kp

2

�2

�Xp�
2 �

− 

p,�,�

�

�Xp�

����t�Xp��P�	Xp
,t� , �10�

where Dp�t���kBT�p�t�kp /2N. Knowing the evolution equa-
tion for P�	Xp
 , t�, it is now a simple matter to derive equa-
tions for the time correlation functions of the normal modes,
which are central to the calculation of G�t�. In particular, by
multiplying Eq. �10� by Xq�Xq�, and integrating the result
over all Xp, we arrive at �18�

�

�t
�Xq��t�Xq��t�� = − 2�q�t��Xq��t�Xq��t�� +

2Dq�t�
�2kq

2 ���

+ 

�

����t��Xq��t�Xq��t�� + 

�

����t�


�Xq��t�Xq��t�� . �11�

As may be verified by direct substitution, the solution of this
equation is

�Xq��t�Xq��t�� = �
−�

t

dt�
2Dq�t��

�2kq
2 


�

E���t,t��E���t,t��


exp�− 2�
t�

t

dt��q�t��� , �12a�

where

�

�t
E���t,t�� = 


�

����t�E���t,t�� , �12b�

E���t,t� = ���. �12c�

If the definition of the function Dq�t� is substituted into Eq.
�12a�, the equation can be rewritten as

�Xq��t�Xq��t�� =
kBT

N�kq
�

−�

t

dt�� �

�t�
exp�− 2�

t�

t

dt��q�t����

B��„E�t,t��… , �13�

where B��(E�t , t��)=
�E���t , t��E���t , t�� is the so-called
finger strain tensor �8�. This expression for the correlation
function of the normal modes will be needed in the calcula-
tion of the stress tensor �, which is the quantity that governs
rheological behavior. For a chain model that includes only
harmonic near-neighbor interactions, the stress tensor as
shown, for example, by Doi and Edwards �8� is given by
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����t� =
3ckBT

Nl2 �
0

N

d�� �r���,t�
��

�r���,t�
��

�, �,� = x,y,z ,

�14�

where c is the polymer concentration. This equation can be
re-expressed in terms of normal modes; the result is

����t� =
6	2ckBT

N2l2 

p=1

N

p2�Xp��t�Xp��t�� . �15�

If Eq. �13� is now substituted into Eq. �15�, a relation is
obtained between the stress and the strain �with the strain
being contained in the tensor B�, and this relation allows the
relaxation modulus to be identified as

G�t,t�� =
ckBT

N


p=1

N

exp�− 2�
t�

t

dt��p�t��� , �16a�

which, by making use of the definition �16� �p�t�
=−
̇p�t� /
p�t�, can be further simplified to

G�t,t�� =
ckBT

N


p=1

N

p

2�t�

p

2�t��
. �16b�

This is the key result of the present calculations. It expresses
the relaxation modulus quite generally in terms of the as yet
unspecified memory function ��� , t� through the function

p�t�. The relaxation modulus is seen to be explicitly a func-
tion of an initial reference time t�, so in this non-Markovian
generalization of the Rouse model, the property of time ho-
mogeneity is lost �although one can set the reference time t�
to zero to ensure dependence on just a single time interval�.

V. EFFECTS OF NOISE ON THE RELAXATION
MODULUS

In order to understand how G�t , t�� is determined by the
kinds of correlations that define the statistical properties of
the random force F�� , t�, we now consider Eq. �16b� in the
limit of two illustrative special cases: white noise �which
should yield the Rouse model� and fractional Gaussian noise.

A. White noise

For this case, the random forces are delta correlated, so

��� , t�=������t� and �p�t�=��t� independent of p. �̂p�s� then
becomes 1, and 
̂p�s�=1 / �s+kp�, so that 
p�t�=exp�−kpt�.
This produces

G�t,t�� =
ckBT

N


p=1

N

exp�− 2p2�t − t��/�R� , �17�

where �R��N2l2 /3	2kBT. Equation �17� is the familiar
Rouse expression �8� for the relaxation modulus, so the ap-
proximation leading to Eq. �9b� does indeed reproduce the
expected limiting behavior.

It should be noted that it is only in this Markovian white
noise limit that time homogeneity is recovered. In the re-
mainder of this discussion, we will choose the reference time

t� to be zero, so that the relaxation modulus is only a func-
tion of the single time t.

B. Fractional Gaussian noise

This kind of noise is a generalization of white noise in the
sense that just as white noise leads to Brownian motion, so
fGn leads to fractional Brownian motion �19�. The defining
characteristic of fGn is that its temporal correlations decay as
a power law. Specifically, ��� , t��2H�2H−1�t2H−2, where H,
the so-called Hurst index, is a real number lying between 1/2
and 1 that is a measure of the degree of temporal correlation
in the noise. In Laplace space, the memory function is given

by �̂p�s�=a�p���2H+1�s−�2H−1�, where ��¯ � is the gamma
function �not to be confused with the memory function itself�
and a�p� is a proportionality constant that may depend on the
mode p. Schweizer’s calculations �9� suggest that the
memory function is at most weakly mode dependent; so for
convenience we shall simply set a�p� to 1. Our calculations
can be extended to consider other �possibly mode-dependent�
values of a�p�. With this choice of memory function, 
p�t� is
given by


p�t� = E2−2H„− �t/�p�2−2H
… , �18�

where Ea�z��
n=0
� zn /��an+1� is the Mittag-Leffler function

�20,21� and �p= ���2H+1� /kp�1/�2−2H�. The relaxation modu-
lus therefore becomes

G�t� =
ckBT

N


p=1

N

E2−2H
2

„− p2�t/�RR�2−2H
… , �19�

where �RR���N2l2��2H+1� /3	2kBT�1/�2−2H�. It is easily
verified that, when H=1 /2, the Mittag-Leffler function re-
duces to an exponential, and G�t� then correctly recovers the
Rouse model.

Equation �19� is the link to fractional dynamics, for the
nature of its time dependence is what determines whether or
not the stress-strain relation can be written in terms of frac-
tional operators. To determine this time dependence, the sum
over modes in Eq. �19� must be evaluated. This probably
cannot be done exactly, but because N is large, the sum can
be approximated by an integral over p from 0 to � �as is
done, for instance, by Bagley �7��. G�t� can therefore be
written as

G�t� �
ckBT

2N
�

0

�

dx x−1/2Eb
2�− xt̄b� �20a�

�
ckBT

2N
J , �20b�

where b=2−2H and t̄� t /�RR. To evaluate the integral J, we
first rearrange it to

J = 

n=0

�
�− 1�nt̄na

��an + 1��0

�

dx xn−1/2Eb�− xt̄b� �21�

using the series expansion definition for one of the Mittag-
Leffler functions. The integral over x is a special case of an
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integral that has been evaluated in Refs. �20,21�. This inte-
gral is

�
0

�

dt ts−1E�,�
� �− wt� =

��s���� − s�
ws������� − s��

, �22�

where E�,�
� �z��
n=0

� ���nzn /n !���n+�� is the generalized
Mittag-Leffler function, with ���n���n+�� /���� as the Po-
chammer symbol. The ordinary and generalized Mittag-
Leffler functions are related as Ea�z�=Ea,1

1 �z�. Using these
results, we find that

G�t� �
ckBT

2N
� t

�RR
�−�1−H�

� , �23�

where

� � 

n=0

�
�− 1�n��n + 1/2���1/2 − n�
��bn + 1���1 − b/2 − bn�

= 

n=0

�
	

��bn + 1���1 − b/2 − bn�

is a positive constant. Thus, G�t� decays as power law, with
an exponent that lies between 0 and 1/2. The special case of
H=1 /2, corresponding to Brownian motion of the chain seg-
ments, leads to an exponent with the value of 1/2, the result
shown earlier by Bagley �7�.

VI. DISCUSSION

Having established that the relaxation modulus G�t� can
decay as a power law in time, it readily follows �as shown,
for instance, by Schiessel et al. �3�� that for a step strain, the
stress ��t� and the strain ��t� are related to each other by a
fractional derivative; specifically,

��t� = E�RR
1−H d1−H

dt1−H��t� , �24�

where E is the constant ��H�ckBT� /2N and d1−H /dt1−H is a
fractional derivative, defined in general by

d�

dt� f�t� =
1

��1 − ��
d

dt
�

0

t

dt��t − t��−�f�t��, 0 � � � 1.

�25�

Equation �24� can be thought of as interpolating between two
limiting cases: the case H=1, corresponding to Hooke’s law
for elastic solids, and the case H=0, corresponding to New-
ton’s law for viscous liquids. �Strictly speaking, H lies be-
tween 1/2 and 1, so the limits considered above are purely
formal. Furthermore, the actual value of H cannot be deter-
mined a priori from the present model in terms of more
fundamental microscopic quantities, such as persistence
lengths or interaction strengths, and it must therefore remain
a phenomenological parameter of the theory.� Equations with
exactly the structure of Eq. �24� �when 1−H lies between 0
and 1� have been found to provide a very satisfactory de-
scription of the mechanical behavior of several viscoelastic
fluids, materials whose properties are intermediate between
elastic solids and simple viscous liquids. But until now,
equations of this kind have generally been regarded as en-
tirely phenomenological. Our calculations suggest that they
are in fact a consequence of the kinds of the temporal corre-
lations that exist between the random forces acting on differ-
ent parts of a tagged chain. If these correlations decay in time
as a power law, the stress relaxes in the same way. Thus, the
microscopic roots of fractional viscoelasticity can be traced
to thermal fluctuations that have the character of fractional
Gaussian noise. �If fractional Gaussian noise is indeed the
stochastic process that underlies chain dynamics in the melt,
it might then be necessary to reexamine the assumptions that
form the basis of models like reptation, which are generally
formulated in terms of the simple—as opposed to
fractional—Brownian motion of chain segments in a confin-
ing tube.�
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